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Abstract
The objective of the present study, an extension of a recent one, is to inter-
compare the utility of the various isothermal three-parameter equations of state
(EOSs) of solids, considered viable at different stages in the development of
the EOS field, spanning over a period of about a century now. In a recent
paper we have compared our isothermal three-parameter equation of state of
solids with seven three-parameter isothermal EOSs—five corresponding to the
regression curves of V/V0 on P , and two to those of P on V/V0. In this study,
we investigate the relative utility of 21, i.e., virtually all, of the viable three-
parameter EOSs—for the purposes of smoothing and interpolation of pressure–
volume data, and extraction of accurate values of isothermal bulk modulus and
its pressure derivative—corresponding to the regression curves of P on V/V0.
We have applied the EOSs, with no constraint on the parameters, to accurate
and model-independent isotherms of nine solids, and assessed the goodness
of the fitting accuracy; goodness of the stability of the fit parameters B0, B ′

0,
and B ′′

0 with variation in the pressure/compression ranges; and goodness of
the agreement of the fit parameters B0 and B ′

0 with experiment. Further, an
additional test of goodness of randomization of the data points about the fit
curves, quantified in terms of the number of wiggles of the data deviation
curves about the fits, is also applied in the present study. The EOSs subjected
to these seven tests are the three-parameter extensions of the EOS models
formulated by Bridgman (1929), Murnaghan (1937), Birch (1938), Slater
(1939), Davis and Gordon (1967),Macdonald (1969),Holzapfel (1991), Poirier
and Tarantola (1998), and the so-called ‘universal EOS’ promoted by Vinet
et al (1986). Also included for the inter-comparison purposes are the three-
parameter EOSs proposed by Keane (1954), Mao (1970), Thomsen (1970),
Huang and Chow (1974), Luban (1983), Freund and Ingalls (1989), Kumari and
Dass (1990), Hama and Suito (1996), and Bose Roy and Bose Roy (1999), and
also the EOS based on a modified Eulerian strain as suggested by Sushil et al
(2004). Interestingly, the three-parameter Mie–Gruneisen EOS, built on the

1 Author to whom any correspondence should be addressed.

0953-8984/05/396193+24$30.00 © 2005 IOP Publishing Ltd Printed in the UK 6193

http://dx.doi.org/10.1088/0953-8984/17/39/007
mailto:papiya_boseroy@rediffmail.com
http://stacks.iop.org/JPhysCM/17/6193


6194 P Bose Roy and S Bose Roy

century-old Mie potential (Partington 1957, Stacey and Davis 2004), is also
tested. The present study leads to some remarkable findings. Most notably,
some of the old EOS models like those of Birch and of Keane, and also the
Mie–Gruneisen EOS, are observed to be in better agreement with experiment
than most of the EOSs that appeared much later in the literature. An inter-
comparison of the overall results inferred from all the 21 EOSs—based on the
most stringent discrimination technique comprising seven important tests ever
applied in the literature—demonstrates that, while most of the EOSs marginally
differ from each other constituting a narrow band of applicability, our model is
decisively superior to all of them.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A precise knowledge of the interatomic forces at the stress-free state and their variation
with pressure and temperature would help, in principle, not merely to calculate all the
thermodynamic properties of a substance, but rather also address the problems related to a
large part of physics—because almost all physical phenomena, discarding the world inside the
atomic nucleus, may be attributed directly or indirectly to the forces between atoms. A lack
of such a precise knowledge has prompted the proposition of a large number of isothermal
two- and three-parameter empirical equations of state (EOSs), over a period of over a century
now [1–44], all of them claiming a successful representation of the experimental EOS data.
However, more often than not, the capability of these EOSs in describing the compressional
behaviour of materials at high pressures has been discussed with little or no reference to the
existing EOSs, and thus the relative utility of the existing EOSs continues to be a point of
speculation.

A few comments may be made here, with regard to the functional form, terminology,
and validity of an EOS. In the literature, namely [28], an isothermal EOS, P = f (V/V0),
in which pressure is the dependent and volume is the independent variable, is labelled as
‘non-inverted’; and an EOS V/V0 = f (P), with volume as the dependent and pressure as
the independent variable, is called an ‘inverted’ EOS. These terminologies are incorrect and
misleading on semantic grounds—it would be appropriate to label the former as the ‘inverted’,
or better still, as the ‘unrealistic’, and the latter as the ‘non-inverted’ or ‘realistic’ EOS. In the
present study we compare all the EOSs considered, corresponding to the regression curves
of P on V/V0, i.e., the unrealistic form, because EOSs in the unrealistic forms are readily
amenable to thermodynamic manipulations. Strictly speaking, all such isothermal EOSs,
which are explicitly expressible in the unrealistic forms only, can be readily dismissed, should
a physical and logical basis be insisted on, as their very functional forms imply that the change
in volume is the ‘cause’ and the change in pressure is the ‘effect’—an assertion which is in utter
conflict with the experimental position, i.e., Nature. That they offer a theoretical advantage
of being readily amenable to thermodynamic manipulations, unlike the realistic forms, is
an inadequacy of the thermodynamic frame. Realistic forms, however, have some intrinsic
advantages [36, 44, 60]. Further, the validity of an EOS does not depend on the rationale on
which EOSs are formulated, i.e., whether the EOSs are empirical, or whether they are having
a theoretical basis, and to what extent the underlying theoretical bases are appealing to, or in
conformity with, the existing theoretical knowledge. Furthermore, the validity of an EOS is
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also not dependent on how best it responds to the theoretical boundary conditions [44]. The
only necessary and sufficient condition for the validity of an EOS, within the confines of the
aimed purposes, is its agreement with experiment. Of course, an EOS founded on a theoretical
basis, and exhibiting a similar or better behaviour with experiment than an empirical one,within
the confines of the experimental purposes for which it is designed and tested, is definitely more
useful because of its flexibility for wider applications. About four decades ago, Hayard [86]
emphasized that ‘Many attempts have been made to derive a compressibility equation from
molecular theory, but none of them has resulted in a convenient equation expressing the results
of experiments with adequate accuracy. To meet this need it is necessary to employ some
empirical equation, the sole justification for which is that it works’—and this position remains
unchanged even to date. It may sound strange, but it is not, because one cannot discount the
fact that the modern physics is founded on a mere empirical fitting.

There are two pathways for the inter-comparative study, either by using the measured
values of the bulk modulus as inputs, or by curve-fitting. In an ideal situation, when error-free
compression and bulk modulus data are available, and a perfectly well behaved equation of
state is also available, the input of the bulk modulus data in such an EOS will generate the
ideal compression data. On the other hand, the EOS on fitting with the ideal compression data
will reproduce the ideal set of bulk modulus data used as inputs. Thus there will be a perfect
synchronization between the two approaches. However, we do not have, at the moment, an
unambiguous set of bulk modulus data even for a solid as simple as NaCl [37] and as stable as
Cu, as discussed later. Furthermore, the experimental uncertainty, accompanying the measured
bulk modulus values, in general, is much larger than those for the measured isotherms. It may be
appreciated that the ambiguity with regard to conclusion on the adequacy of an EOS, in the case
of the ‘input’ approach, is much higher compared to that based on the curve-fitting technique.
Conceivably, there are two distinct situations, for accurate EOS data, in which a good agreement
between the data curve and fit may be achieved in the ‘input’ approach. First, the systematic
biases, that invariably bear a sign, arising from the poor functional form of the EOS tend to
cancel the systematic biases resulting from the constraints imposed by the ambiguous set of
bulk modulus data as well as the additional constraints of the interrelation between them. In
fact, a number of authors have exploited this possibility by choosing a particular set of bulk
modulus data that best suits to enforce the validity or utility of their models. Second, because
the EOS behaves well, and the resultant of the systematic biases related to the bulk modulus
data is reduced to an insignificant level, due to cancellation effects—statistically, however,
such situations of mutual cancellation effects are highly improbable. Further, although an
observed disagreement beyond experimental uncertainty may be attributed to the systematic
biases inherent in the EOS model as well as the bulk modulus data, it is also possible that
the EOS behaves well otherwise, but is forced to follow a deviant path due to the highly
uncertain bulk modulus data. Obviously, under such situations, individual identification of the
EOS bias is not possible. This is why, agreement or disagreement, either way it is difficult
to arrive at a conclusion on the adequacy of an EOS. While in the curve-fitting approach,
if the EOS data are accurate, the deviations in the predictions may be attributed mainly to
the poor functional form of the EOS model, because a well optimized EOS resists a deviant
path [87]. Therefore, if the EOS data are accurate and model independent, and range to large
pressure/compression values, the curve fitting is the correct approach to assess or compare the
prediction capability of an EOS. An obsession of various workers with the appropriateness
of the ‘input’ approach [17, 45, 46, 50, 70, 80], over the decades, in conjunction with the
paucity of the experimentally measured values of B ′′

0 , has, in fact denied the three-parameter
EOSs as much attention as the two-parameter EOSs, in respect of their utility. However,
the traditionally accepted view that the inclusion of increasing number of parameters would
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increasingly improve the behaviour of an EOS towards experiments is not necessarily true, for
reasons referred to in [37]. Sometimes the authors, viz [47], obsessed with the ‘input’ approach,
but confronted with the problem of selection of data, picked up a measured value of B0 of their
choice, and treated B ′

0 as a fitting parameter to achieve the best fit to the higher-pressure EOS
curves. This approach is also unjustified because of the inherent interdependence of the bulk
modulus values.

An EOS plays an important role in the physics of condensed matter. It helps us to predict
ground-state bulk properties [83], mechanical properties of materials in our surroundings under
extreme conditions, as in geological formations and settings [81] and for numerous industrial
applications [82, 84]. Our goal in this study is to investigate the relative utility of virtually
all the viable isothermal three-parameter EOSs, on the basis of a stringent discrimination
technique comprising seven important tests—for the purposes of smoothing and interpolation
of pressure–volume data, and extraction of accurate values of isothermal bulk modulus and its
pressure derivative—corresponding to the regression curves of P on V/V0.

2. Empirical equations of state

Here only the isothermal three-parameter EOSs are presented for consideration. Constancy of
temperature is assumed throughout, and no special notation is used. V and V0 are the volumes
at pressure P and zero, respectively, while B0, B ′

0, and B ′′
0 are the isothermal bulk modulus

and their pressure derivatives in the stress-free state.
A potential function of the general form based on the century-old potential (1903) proposed

by Mie and extended by Gruneisen [79] is

E(r) = −A(a/r)m + B(a/r)n.

Here, a is the equilibrium (zero-pressure) value of atomic spacing, r . A, and B are positive
constants with the dimensions of energy, and m and n are dimensionless indices (n > m),
often, but not necessarily, integers.

The three-parameter EOS built on this well known potential [41], and hereafter referred
to as the Mie–Gruneisen EOS, is

P = {3B0/(n − m)}[(V/V0)
−(1+n/3) − (V/V0)

−(1+m/3)] (1)

where

n = 3[(1/2)(B ′2
0 + 4B0 B ′′

0 )1/2 + (1/2)B ′
0 − 1],

m = 3[(1/2)B ′
0 − 1 − (1/2)(B ′2

0 + 4B0 B ′′
0 )1/2] and (n − m) = 3(B ′2

0 + 4B0 B ′′
0 )1/2.

It may be noted here that a number of EOSs have appeared in the literature where m and
n are regarded as disposable parameters with specific choices—to illustrate, the well known
two-parameter Born–Mie EOS is a special case, with m = 1. Further, it will be interesting to
note that the three-parameter EOS, purported to be based on the generalized Lennard-Jones
potential, by Sun (equation (4) of [44]), is the same as the Mie–Gruneisen EOS formulated
above.

Murnaghan’s [3] two-parameter EOS is based on a Taylor expansion of the isothermal bulk
modulus to second order in terms of the pressure. Murnaghan himself, however, realized the
inadequacy of this two-parameter EOS at high compression, and proposed a three-parameter
EOS to include B ′′

0 [6], which can be put in the unrealistic form as

P = B0[{2(V/V0)
� − 2}/{B ′

0(1 − (V/V0)
�) − �(1 + (V/V0)

�)}], (2)

with

�2 = B ′2
0 − 2B0 B ′′

0 > 0.
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Birch [7, 9–11] developed an expression based on the Eulerian strain measure f =
[(V0/V )2/3 − 1]/2. A Taylor expansion of the strain energy in terms of f , truncated at
the fourth-order term of energy in strain, yields the following three-parameter EOS:

P = 3B0 f (1 + 2 f )5/2[1 + a1 f + a2 f 2 + · · ·], (3)

with

a1 = 3/2(B ′
0 − 4) and a2 = 3[B0 B ′′

0 + B ′
0(B ′

0 − 7) + (143/9)]/2.

This equation is, in fact, the three-parameter extension of the two-parameter EOS that has
achieved prominence in the literature as the Birch–Murnaghan EOS through its application
by Birch [7–10] and others to problems of finite compression in the interior of the earth. It
was apparently first written by Murnaghan [3] in an early exposition of the thoughts which led
eventually to his 1951 treatise [17].

Birch [10] using Murnaghan’s finite elasticity theory has shown that at pressures existing
in the earth’s interior the gradient of the bulk modulus B with pressure P is a decreasing
function of pressure. Keane [13] noted that an exact solution of a formula, from a derivation of
Murnaghan [5], for the calculation of B and dB/dP at large pressures is impossible to obtain,
without the knowledge of the variation of the bulk modulus with pressure. This recognition
prompted Keane [14] to come up with an improved Murnaghan model with an explicit use of
the equation of state parameter B ′∝, the asymptotic limit of B ′ as P →∝.

P = B0[(B ′
0/B ′

∝)((V/V0)
−a − 1) + ((B ′

0/B ′
∝) − 1) ln(V/V0)]. (4)

Here,

a = B ′
∝.

Davis and Gordon [15] chose to expand the pressures in powers of V0/V , about V0/V = 1
or V = V0. This expansion, up to the cubic term, leads to a three-parameter EOS:

P = B0[(x − 1) + (1/2)(B ′
0 − 1)(x − 1)2 + (1/6)(B ′2

0 − 3B ′
0 + 2 + B0 B ′′

0 )(x − 1)3], (5)

where

x = V0/V .

Mao [18] derived an empirical equation of state for high compression from the assumption
that B(dP/dB) = a + bP , where a and b are constants determined by the initial conditions.
Successive integration of this equation leads to

P = (a/b){[1 − (B0(b − 1)/a) ln(V/V0)]b/(b−1) − 1}, (6)

where

a = B0/B ′
0 and b = 1 − (B0 B ′′

0 /B ′
0)

2 �= 1.

This straightforward modification of the Murnaghan model reduces to the two-parameter
Murnaghan EOS for b = 1.

Huang and Chow [20] proposed a relatively simple three-parameter EOS which may be
expressed in the unrealistic form as

P = (1/b)[{1 − (1/a)(1 − (V/V0))}−(1/c) − 1], (7)

with

a = (1 + B ′
0)/(1 + B ′

0 + B0 B ′′
0 ), b = (B ′

0/B0) − [B ′′
0 /(B ′

0 + 1)]

and c = (1 + B ′
0 + B0 B ′′

0 )/(B ′2
0 + B ′

0 − B0 B ′′
0 ).
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An improved version of the Murnaghan model, proposed by Luban [22] and extensively
used by Anderson et al [22], can be explicitly expressed in the realistic form only, as

V/V0 = exp{(−1/α2 B0)[αβ P + (α − β) ln(1 + αP)]}, (8)

with

B ′
0 = B0(α − β) and B ′′

0 = −2β B ′
0.

Vinet et al [24] strongly promoted a two-parameter EOS proposed by Rose et al [23],
founded on the well known Rydberg empirical potential function, as the so-called universal
EOS. This EOS was in fact first proposed earlier by Stacey [21, 85] and rediscovered by
Rose [41]. The three-parameter extension of this model yields the following EOS [27]:

P = 3B0(1 − x)(x−2)(exp M). (9)

Here,

M = (3/2)(B ′
0 − 1)(1 − x) + (3/2)(1 − x)2[(1/4)B ′2

0 + (1/2)B ′
0 + B0 B ′′

0 − (19/36)]

and x = (V/V0)
1/3.

Freund and Ingalls [28] modified the ‘usual’ Tait equation [37], which may be put in the
unrealistic form as

P = (1/b)[exp {(1/a)(1 − (V/V0)
1/c)} − 1], (10)

with the parameters

a = [(B ′2
0 − 4B0 B ′′

0 )1/2 − B ′
0]/[(B ′2

0 − 4B0 B ′′
0 )1/2 + B ′

0],

b = [(B ′2
0 − 4B0 B ′′

0 )1/2 + B ′
0]/2B0 and c = 2[(B ′2

0 − 4B0 B ′′
0 )1/2 − B ′

0].

Kumari and Dass [29] presented an improved version of the Murnaghan equation by
taking the high-order terms in the Taylor series expansion into account, on the basis of the
assumption of the constancy of the ratio B(n+1)

0 /B(n)
0 = B ′′

0 /B ′
0 for n > 1, with B(n)

0 as the
n th-order pressure derivative of the isothermal bulk modulus at zero pressure. Their EOS,
expressed explicitly in the unrealistic form, is

P = (−B ′
0/B ′′

0 )[ln {(m + ((V/V0)
−n))/(1 + m)}]. (11)

Here,

m = −B ′2
0 /B0 B ′′

0 and n = B ′
0 − (B0 B ′′

0 /B ′
0).

Holzapfel [30] proposed an EOS, labelled as the HO2 relation, in the form

P = 3B0(V/V0)
−(n/3)(1 − (V/V0)

1/3)[exp {(1.5B ′
0 + 1/2 − n)(1 − (V/V0)

1/3)}], (12)

where

n = 5.

A choice of n = 2 in the above relation would correspond to the so-called two-parameter
universal equation of state of solids [24]. This relation has been used in recent years to
determine the EOS of some solids [68, 76]. Recently Kunc et al [77] noted that the best least-
squares fit for describing their theoretical pressure–volume data for diamond was achieved
with n = 7/2. This value yields an EOS which is a blend of the Vinet form and the Holzapfel
expression. Obviously, the specific choice of n yields a specific EOS. In the present study we
have regarded n as a free parameter in curve fitting, thus converting the above HO2 relation
into a three-parameter EOS.

Hama and Suito [34] have examined some EOSs for solids by comparing them with the
theoretical results calculated by the augmented-plane-wave method and quantum statistical
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model (QSM) proposed by Kalitkin and Kuzmina [34 and citations therein]. For the application
to polyatomic solids, they implanted into the linearized scheme of Vinet et al [24] the results
from the QSM solution and formulated a modified three-parameter universal EOS

P = 3B0x−5(1 − x) exp[(3/2)(B ′
0 − 3)(1 − x) + (ς − (3/2))(1 − x)2], (13)

where

x = (V/V0)
1/3 and ς = (3/8)(B ′

0 − 1)(B ′
0 + 3) + (3/2)B0 B ′′

0 + (1/3).

Poirier and Tarantola [35] questioned the fundamental bases of both Love and Birch approaches,
and strongly asserted that the Hencky strain formalism is the correct one. Accordingly, they
proposed an EOS explicit up to the two-parameter level only. The three-parameter extension
of this EOS, which was recently tested by Stacey and Davis [41] against the geophysical data,
and Sushil et al [39] against theoretical data, may be expressed as

P = (V0/V )B0[ln(V0/V ) + (1/2)(B ′
0 − 2)(ln(V0/V ))2

+ (1/6)(B0 B ′′
0 + B ′2

0 − 3B ′
0 + 3)(ln(V0/V ))3]. (14)

Very recently Sushil et al [39], following the path of Birch but using n = 1 instead of
n = 2 in the Eulerian strain measure f = (1/n)[(V/V0)

−n/3 − 1], and using the method of
Stacey [78], proposed a modified three-parameter Eulerian strain EOS,

P = (9/2)B0[−A1x−4/3 + A2x−5/3 − A3x−2 + A4x−7/3], (15)

where

x = (V/V0), A1 = B0 B ′′
0 + (B ′

0 − 3)2 + (26/9),

A2 = 3B0 B ′′
0 + (B ′

0 − 3)(3B ′
0 − 8) + (66/9),

A3 = 3B0 B ′′
0 + (B ′

0 − 3)(3B ′
0 − 7) + (60/9)

and A4 = B0 B ′′
0 + (B ′

0 − 3)(B ′
0 − 2) + (20/9).

Further, Sushil et al claimed that their EOS based on a modified Eulerian strain is more rapidly
convergent than the Birch–Murnaghan EOS founded on the Eulerian strain.

Bose Roy and Bose Roy [36] suggested a three-parameter EOS in the realistic form

V/V0 = 1 − {(ln(1 + a P))/(b + cP)}. (16)

Here,

a = (1/8B0)[3(B ′
0 + 1) + (25B ′2

0 + 18B ′
0 − 32B0 B ′′

0 − 7)1/2],

b = (1/8)[3(B ′
0 + 1) + (25B ′2

0 + 18B ′
0 − 32B0 B ′′

0 − 7)1/2]

and

c = [(1/16)[3(B ′
0 + 1) + (25B ′2

0 + 18B ′
0 − 32B0 B ′′

0 − 7)1/2]]

× [(B ′
0 + 1) − (1/8)[3(B ′

0 + 1) + (25B ′2
0 + 18B ′

0 − 32B0 B ′′
0 − 7)1/2]].

We mention below some EOSs which have often been applied/discussed in the literature,
although their behaviour towards experiment, at high pressures, is at wide variance with the
EOSs referred to above.

Following Bridgman’s approach [16], Taylor expansion of V in powers of P around
P = 0, to third degree, the EOS obtained is

V/V0 = 1 − (1/B0)P + (1/2)(1/B2
0)(B ′

0 + 1)P2

− (1/12)(1/B3
0)(4B ′2

0 + 6B ′
0 − 2B0 B ′′

0 + 2)P3. (17)
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Slater’s [12] expansion of pressure as polynomial in volume compression, (1 − V/V0),
up to the cubic term yields

P = B0(1 − V/V0) + (1/2)B0(B ′
0 + 1)(1 − V/V0)

2

+ (1/12)B0(2B ′2
0 + 6B ′

0 + B0 B ′′
0 + 4)(1 − V/V0)

3. (18)

An alternative approach has been suggested by Onat and Vaisnys [15], whereby the
pressure is expanded in powers of ln V about V = V0, giving

P = −B0 ln(V/V0) + (1/2)B0 B ′
0[ln(V/V0)]

2

− (1/6)(B2
0 B ′′

0 − B0 B ′2
0 )[ln(V/V0)]3. (19)

Cubic inverse volume EOS, as discussed by Macdonald [80], is

V/V0 = [1 + (1/B0)P − (1/2)(1/B2
0)(B ′

0 − 1)P2

+ (1/12)(1/B3
0)(4B ′2

0 − 6B ′
0 − B0 B ′′

0 + 2)P3]−1. (20)

A two-parameter Lagrangian EOS is documented in Murnaghan’s 1951 monograph [5]. It
will be interesting to study the three-parameter extension of this EOS [17] from an application
point of view. With n = −2, in the Lagrangian strain measure, f = (1/n)[(V/V0)

−n/3 − 1],
the EOS obtained, in line with Stacey [78], is

P = (9/16)B0[{(B0 B ′′
0 + 3B ′

0 + B ′2
0 + (23/9))(V/V0)

−1/3}
− {(3B0 B ′′

0 + 7B ′
0 + 3B ′2

0 + (7/3))(V/V0)
1/3}

+ {(3B0 B ′′
0 + 5B ′

0 + 3B ′2
0 − (1/3))(V/V0)}

− {(B0 B ′′
0 + B ′

0 + B ′2
0 − (1/9))(V/V0)

5/3}]. (21)

3. Application to model-independent experimental isotherms: results and discussions

All the 21 EOSs presented in section 2 are fitted to the EOS data of nine solids, differing
considerably in their bulk modulus values, namely Ag, Al, Mg, Pd, MgO [56], NaCl [57],
Cu [58], Mo and W [59]—corresponding to the regression curves of P on V/V0. These data
are not directly measured isotherms, but are computed reductions of shock Hugoniot data to
isotherms. However, these data are accurate enough to allow a meaningful discrimination
between the applicabilities of the EOS models. Moreover, these data are also model
independent as they are not biased by any of the isothermal EOSs considered in the present
study. The original isotherms of the above solids, referred to hereafter as the high-pressure
isotherms, are abbreviated as HPIs. The subsets of these HPIs, from the pressure values P = 0
to a low pressure maximum, referred to hereafter as low-pressure isotherms, are abbreviated as
LPIs. The details related to these HPIs and LPIs are summarized in table 1. The experimental
bulk modulus values, chosen for the purpose of comparison with the fit parameters for HPIs,
are tabulated in table 2. The root-mean-square deviations (RMSDs) between the data points
(HPIs) and fits are reported in table 3. The values of the fit bulk modulus parameters, as
such, are not shown. Instead, the deviation parameters, Di (i = 1, 2, 3, 4, 5), which are
more important and meaningful for comparing the applicability of the EOSs, are computed
and compared in tables 4–8. D1 values refer to the percentage deviations of the fit values of
B0 inferred from the HPIs from those of the fit values of B0 inferred from the LPIs, for all the
isotherms of the solids considered. Moreover, likewise, D2 values and D3 values refer to the
corresponding deviations of B ′

0 and B ′′
0 , respectively, while D4 values and D5 values are the

percentage deviations of the fitted B0 and B ′
0 from the corresponding experimental values. It

may be noted that the EOSs are arranged in decreasing order of their relative performance as
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Table 1. Details related to the isotherms of solids and their subsets used in the study. n denotes
the number of data points.

High-pressure isotherm Low-pressure isotherm
(HPI) (LPI)

T Pmax Pmax

Solids References (K) n (kbar) MRV n (kbar) MRV

Ag [56] 293 57 1 500 0.6519 29 145 0.9017
Al [56] 293 49 1 100 0.6083 20 100 0.9010
Cu [58] 300 10 10 040 0.436 8 5420 0.502
Mg [56] 293 41 700 0.5510 8 40 0.9081
Mo [59] 293 30 3 000 0.6305 8 800 0.8167
Pd [56] 293 67 2 000 0.6831 32 250 0.9018
W [59] 293 30 3 000 0.6552 8 800 0.8347
MgO [56] 293 51 850 0.7046 31 200 0.9017
NaCl [57] 293 40 200 0.7023 8 40 0.8849

Table 2. Experimental values of B0 and B ′
0 used for comparison purposes.

B0 (Expt)
Solids (kbar) References B ′

0 (Expt) References

Ag 1047a [61, 62] 5.53 [63]
Al 742 ± 8 [64] 4.72 [65]
Cu 1420 [61] 5.25 [66]
Mg 344.20 [67] 4.16 [67]
Mo 2653 [61] 4.5 ± 0.5 [68]
Pd 1808 [62] 5.3 ± 0.2 [68]
W 3084 [69] 4.0 ± 0.2 [68]
MgO 1560 [71] 4.52 [72]
NaCl 238.35 [49] 5.11 [48]

a An average of the two values.

we move down tables 3–8. It may be noted that RMSDs in table 3, and Di values in tables 4–
8 are arranged in such a way that the number of solids for which these values are of lower
magnitude is higher in any row than the rows that follow down the table. Further, it may be
noted that results are shown for 16 EOSs only, because we observe that the performance of
equations (17)–(21) is very poor, and does not merit any consideration for comparison, on a
relative scale, along with the rest of the EOSs. However, we have noted our observations on
the performance of these models in the later sections.

3.1. Fitting accuracy

Fitting accuracy is assessed, in terms of root-mean-square deviations (RMSDs) between the
data points and fits. Fitting accuracy is a measure of the agreement between the data points
and fits, and not a measure, it must be emphasized, of the agreement between the data curves
and fit curves. Though, in general, a good curve-fitting capability is observed for an EOS
that exhibits a good fitting accuracy, this is not always true [37, 55]. This coincidence often
prompted the workers in the past to investigate the applicability of an EOS on the basis of
fitting accuracy alone, and unfortunately, this trend still continues [44]. An EOS that describes
the data points very successfully but fails to describe the data curves is of no utility from an
application point of view, even for interpolation purposes [55].
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Table 3. Root-mean-square deviations (RMSDs) between the data points and fits corresponding
to the regression curves of P on V/V0 (in kbar) for selected solids.

3-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy 0.18 0.21 17.80 0.19 1.03 0.24 0.41 0.24 0.078
2 Birch–Murnaghan 0.809 0.433 25.56 0.27 1.247 0.72 0.66 0.263 0.085
3 Keane 0.807 0.40 30.00 0.34 1.250 0.71 0.61 0.264 0.12
4 Mie–Gruneisen 0.813 0.447 35.82 0.345 1.295 0.7287 0.686 0.270 0.45
5 Holzapfel 0.80 0.450 27.75 0.347 1.300 0.7286 0.689 0.272 0.091
6 Hama–Suito 0.88 0.47 30.83 0.385 1.32 0.80 0.71 0.281 0.0949
7 SASS 1.10 0.46 36.62 0.36 1.298 0.981 0.688 0.284 0.0999
8 Davis–Gordon 1.17 0.428 39.62 0.37 1.27 1.04 0.64 0.283 0.1099
9 Universal 0.91 0.49 31.20 0.40 1.35 0.82 0.74 0.285 0.0941

10 Mao 0.886 0.54 22.28 0.389 1.41 0.84 0.83 0.299 0.0951
11 Freund–Ingalls 0.888 0.56 23.02 0.392 1.44 0.85 0.88 0.304 0.081
12 Huang–Chow 0.903 0.60 21.05 0.41 1.48 0.87 0.94 0.31 0.083
13 Kumari–Dass 0.959 0.73 17.91 0.442 1.65 0.97 1.16 0.359 0.080
14 Murnaghan 0.961 0.75 18.40 0.444 1.67 0.98 1.20 0.365 0.090
15 Luban 0.97 0.77 16.70 0.45 1.75 0.99 1.23 0.38 0.102
16 Poirier–Tarantola 1.70 0.60 55.06 0.58 1.46 1.55 0.84 0.37 0.1100

Table 4. Percentage deviations in the fit values of B0 for the HPI from those of B0 for the LPI,
denoted by D1 in the text.

3-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy 0.47 1.28 5.22 0.95 0.26 0.33 0.42 0.20 −0.29
2 Mie–Gruneisen 2.273 3.49 44.50 2.70 1.05 1.42 0.55 0.2613 0.38
3 Keane 2.275 1.93 27.71 3.28 1.09 1.37 0.84 0.2614 −3.05
4 Birch–Murnaghan 2.37 2.18 16.79 2.69 1.16 1.421 1.00 0.2614 −1.34
5 Holzapfel 2.37 2.20 26.21 3.49 1.31 1.42 1.03 0.33 −1.71
6 Hama–Suito 2.654 2.28 33.37 3.91 1.39 1.58 1.10 0.391 −1.88
7 Universal 2.654 2.36 33.83 4.054 1.46 1.69 1.16 0.391 1.88
8 SASS 3.32 2.23 −34.09 3.61 1.28 1.97 1.03 0.392 −2.26
9 Davis–Gordon 3.60 2.06 42.84 3.61 1.16 2.08 0.94 0.392 −2.76

10 Mao 2.652 2.77 12.66 3.99 1.65 1.80 1.3889 0.46 −1.80
11 Freund–Ingalls 2.75 2.82 13.63 4.053 1.72 1.80 1.49 0.52 −0.79
12 Huang–Chow 2.75 3.02 10.51 4.20 1.87 1.91 1.61 0.59 −1.00
13 Luban 3.03 2.89 4.61 3.70 2.32 2.18 2.03 0.78 −0.41
14 Kumari–Dass 3.13 3.53 5.47 4.55 2.28 2.24 1.97 0.78 0.63
15 Murnaghan 3.13 3.57 6.13 4.58 2.32 2.24 2.03 0.72 1.21
16 Poirier–Tarantola 5.78 2.97 63.36 6.01 1.84 3.44 1.39 0.85 −2.72

Table 3 shows that the RMSDs inferred from our model (equation (16)) are lower than
those inferred from the rest of the EOSs by a variable factor, rising to as high as 4. The solitary
exception is the one yielded by the Luban EOS (equation (8)) for the isotherm of Cu only.
All the EOSs, in sharp contrast with the excellent performance of equation (16), utterly fail
to describe the data curve for Cu. That even the Luban EOS as discussed in the next section,
with a fitting accuracy slightly better than ours, proves no exception endorses the dictum that
the fitting accuracy alone cannot certify the validity of an EOS.

3.2. Fit parameters: stability and agreement with experiment

The assumption of constant variance of random disturbance distribution, and the assumption
that the systematic biases are weak or absent for an accurate experimental isotherm,
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Table 5. Percentage deviations in the fit values of B ′
0 for the HPI from those of B ′

0 for the LPI,
denoted by D2 in the text.

3-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy −2.81 −10.15 3.74 −6.46 −1.45 −1.63 −2.63 0.58 1.85
2 Mie–Gruneisen −10.04 −15.39 −89.57 −10.88 −3.77 −6.49 −2.10 −2.18 −3.58
3 Birch–Murnaghan −10.16 −14.6 −23.13 16.0 −4.77 −6.34 −5.21 −2.37 7.08
4 Keane −10.37 −14.7 −45.60 −19.02 −5.17 −6.20 −4.93 −2.65 17.60
5 Holzapfel −10.52 −15.26 −48.36 −19.48 −6.04 −6.59 −5.85 −2.96 8.84
6 Luban −11.14 −12.99 −5.84 −9.63 −9.58 −8.94 −9.59 −4.96 5.62
7 SASS −15.78 −15.64 −55.23 −19.90 −5.99 −10.09 −5.87 −3.75 12.45
8 Hama–Suito −12.01 −15.88 −67.61 −21.28 −6.62 −7.67 −6.21 −3.67 10.0
9 Davis–Gordon −17.54 −15.11 −74.04 −20.31 −5.61 −11.16 −5.36 −3.90 15.72

10 Universal −12.3 −16.4 −69.79 −22.1 −7.1 −7.9 −6.59 −3.89 9.77
11 Freund–Ingalls −11.69 −17.88 −19.94 −21.05 −7.90 −8.19 −7.75 −4.27 3.82
12 Mao −11.79 −18.72 −19.16 −21.30 −7.84 −8.18 −7.63 −4.34 9.60
13 Huang–Chow −11.93 −19.23 −14.66 −21.60 −8.50 −8.49 −8.35 −4.60 4.97
14 Murnaghan −12.17 −19.38 −7.82 −21.85 −9.36 −9.36 −9.42 −5.39 −4.86
15 Kumari–Dass −12.28 −19.95 −6.85 −22.02 −9.41 −9.35 −9.41 −5.51 −2.84
16 Poirier–Tarantola −29.65 −20.38 −166.7 −30.52 −9.40 −19.93 −8.32 −7.92 15.86

Table 6. Percentage deviations in the fit values of B ′′
0 /n/B ′∝ for the HPI from those of B ′′

0 /n/B ′∝
for the LPI, denoted by D3 in the text. B ′′

0 , n and B ′∝ are treated as free parameters.

3-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy −18.9 −61.8 −9.25 −54.1 −8.77 −4.94 −17.7 −0.44 6.44
2 Keane 55.2 250 23.1 196.1 10.4 5.41 14.2 13.0 −32.1
3 Mie–Gruneisen −76.3 −39.2 −1779 −65.3 −23.2 −55.0 −12.1 −35.4 −21.2
4 Birch–Murnaghan −73.9 −75.5 −85.0 −79.6 −30.2 −51.5 −35.7 −36.2 46.1
5 SASS −130.5 −79.7 242.6 −91.6 −43.3 −111.1 −43.9 −56.0 95.2
6 Davis–Gordon −151.4 −77.9 127.5 −93.3 −41.3 −132.5 −40.8 −58.8 127.2
7 Hama–Suito −95.3 80.6 584.1 −96.7 −49.8 −73.7 −47.5 −55.1 68.0
8 Universal −98.4 −82.3 409.3 −99.2 −54.5 −77.2 −50.9 −58.0 66.7
9 Freund–Ingalls −90.4 −88.0 −5025 −95.8 −61.2 −76.7 −60.4 −62.8 18.58

10 Mao −90.7 −89.3 −4282 −96.1 −61.1 −76.6 −60.0 −63.5 74.0
11 Huang–Chow −92.3 −91.3 9302 −97.1 −67.2 −80.4 −66.0 −67.2 30.0
12 Luban −95.53 −86.56 438.7 −105.6 −77.89 −88.58 −76.72 −68.15 818.4
13 Murnaghan −96.4 −94.5 1125 −98.5 −77.1 −89.9 −76.1 −77.9 −44.5
14 Kumari–Dass −96.1 94.9 −93.6 −98.61 −98.6 −74.8 −88.9 −73.6 −77.3
15 Poirier–Tarantola −308.8 −96.7 −56.5 −123.7 −79.8 −340.0 −68.6 −119.9 145.9
16 Holzapfel 188.7 134 90.6 −159.4 146.8 52.8 212.2 107.4 −1303

implies that when an adequate (i.e., a true hypothetical) EOS model is fitted to the various
pressure/compression ranges of an isotherm, the same set of fit bulk moduli parameters should
be obtained. In practice, however, a disagreement is observed between different sets of fit
parameters, when an EOS is applied to various pressure/compression ranges of an isotherm.
The observed disagreement may be attributed to the inadequacy of the real EOS model, and to
the real data which are data of limited span and precision. However, for the various ranges of
the same set of compression data, the magnitude of such disagreements in the fit parameters,
observed for various EOS models, may well serve as a test to assess the adequacies of the
considered EOSs, on a relative scale.
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Table 7. Percentage deviations in the fit values of B0 for the HPI from those of B0 from experiment,
denoted by D4 in the text. Deviations related to the LPI of Cu included.

Cu Cu
3-parameter EOS Ag Al (HPI) (LPI) Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy 1.34 3.60 −1.48 (2.61) −1.48 0.79 1.60 0.84 −1.99 0.15
2 Keane 3.06 4.03 46.06 (14.37) 1.39 1.51 2.60 1.17 −1.67 −2.79
3 Birch–Murnaghan 3.15 4.39 31.76 (12.75) 0.81 1.66 2.65 1.39 −1.67 −1.03
4 Mie–Gruneisen 3.15 4.37 65.56 (14.58) 1.54 1.73 2.71 1.39 −1.60 0.99
5 Holzapfel 3.15 4.38 44.79 (14.72) 1.60 1.77 2.71 1.39 −1.60 −1.41
6 Hama–Suito 3.44 4.46 55.63 (16.69) 2.00 1.85 2.88 1.46 −1.54 −1.62
7 Universal 3.44 4.53 57.11 (17.32) 2.15 1.92 2.93 1.52 −1.54 −1.57
8 Mao 3.53 4.91 30.99 (17.32) 2.12 2.19 3.10 1.78 −1.41 −1.49
9 Freund–Ingalls 3.63 5.05 32.11 (18.03) 2.18 2.30 3.10 1.91 −1.41 −0.44

10 Huang–Chow 3.63 5.20 28.87 (16.27) 2.32 2.45 3.21 2.04 −1.35 −0.65
11 SASS 4.11 4.39 −57.32 (16.27) 1.71 1.73 3.26 1.39 −1.54 −1.99
12 Davis–Gordon 4.39 4.20 68.59 (16.62) 1.71 1.62 3.37 1.26 −1.54 −2.50
13 Kumari–Dass 4.01 5.82 23.59 (17.18) 2.70 2.94 3.54 2.50 −1.15 1.03
14 Luban 4.01 5.89 23.17 (17.18) 2.73 2.98 3.54 2.53 −1.15 0.78
15 Murnaghan 4.01 5.93 24.37 (34.72) 2.73 3.02 3.54 2.59 −1.15 1.62
16 Poirier–Tarantola 6.59 5.12 120.1 (17.75) 4.07 2.30 4.76 1.75 −1.09 −2.41

Table 8. Percentage deviations in the fit values of B ′
0 for the HPI from those of B ′

0 from experiment,
denoted by D5 in the text. Deviations related to the LPI of Cu included.

Cu (Cu)
3-parameter EOS Ag Al (HPI) (LPI) Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy 4.3 9.5 −2.9 (−6.4) 0.5 3.0 0.9 1.8 0.4 2.47
2 Keane −10.94 −10.68 −59.58 (−25.69) −10.63 −5.6 −5.26 −2.7 −2.35 20.82
3 Birch–Murnaghan 11.0 12.3 −39.6 (−21.45) 7.9 6.3 5.5 4.0 2.4 9.47
4 Mie–Gruneisen −11.19 −12.39 −92.28 (−25.96) −11.15 −6.93 −5.68 −4.2 −2.83 −4.15
5 Holzapfel −11.28 −12.46 −61.89 (−26.19) −11.47 −7.05 5.792 −4.23 −2.96 11.35
6 SASS −16.49 −12.56 −69.20 (−31.2) −11.85 −6.98 −9.42 −4.23 −3.56 15.21
7 Hama–Suito −12.78 −12.92 −77.50 (−30.55) −13.37 −7.55 −6.91 −4.53 −3.50 12.58
8 Davis–Gordon −18.23 −11.67 −82.75 (−33.56) −12.12 −6.28 −10.49 −3.38 −3.58 18.69
9 Universal 13.0 13.3 −79.4 (−31.9) 14.2 8.0 7.2 5.0 3.8 12.33

10 Mao −12.89 −15.11 −41.35 (−28.34) −13.56 −9.43 −7.62 −6.53 −4.45 11.68
11 Freund–Ingalls −12.95 −15.74 −42.63 (−28.34) −13.70 −9.95 −7.74 −7.18 −4.67 5.38
12 Huang–Chow −13.22 −16.42 −39.10 (−28.65) −14.23 −10.65 −8.06 −7.83 −5.00 6.58
13 Kumari–Dass −14.09 −18.75 −33.94 (−29.09) −15.36 −12.63 −9.26 −10.0 −6.33 −2.29
14 Luban −14.16 −18.81 −33.62 (−29.50) −15.43 −12.70 −9.34 −10.00 −6.35 −1.12
15 Murnaghan −14.10 −19.03 −34.63 (−29.09) −15.41 −12.88 −9.34 −10.3 −6.46 −4.54
16 Poirier–Tarantola −30.54 −16.89 −123.4 (−65.01) −23.34 −10.38 −19.64 −6.6 −7.70 18.38

A high degree of ambiguity accompanies the measured bulk moduli data even for a
substance as simple as NaCl [37], and also as stable as Cu. However, the problem of selection
of experimental bulk modulus data, for the purpose of comparison with the fit parameters, is
resolved in line with our earlier approach [37]. We have observed a spectacular convergence
of equations (1)–(16) for the LPIs—except for the LPI of Cu for which the pressure ranges
to well above 5 Mbar and the maximum compression suffered is about 50%—which accords
well with some of the earlier observations [37, 51–53]. Further, we have observed that even
the equations (17)–(21), whose curve-fitting capability at high pressure is very poor, also tend
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to converge for the LPIs. In particular, the EOS proposed by Onat and Vaisnys (equation (19))
is on a par with equations (1)–(16) for the LPIs. Because in the low-pressure region the fit
parameters are virtually independent of the analytical forms of the EOS models chosen, these
values may be considered as the closest approximation to the real bulk modulus values of
the solids. Therefore the bulk modulus data, which are closest to the values to which the
considered EOSs converge, are selected in table 2 for the comparison purposes—and therefore
the selection of data is not arbitrary. Notably, even for Cu, which is predicted to remain stable
in the fcc structure up to at least 2.5 TPa [58], there is a considerable disagreement among the
three sets of literature values of B0, 1370 [62], 1420 [61], and 1332 ± 20 kbar [68], while the
values of B ′

0, 5.4(±2) [68] and 5.25 [61], agree well. The rationale for choosing the value
of 1420 kbar for Cu (table 2) for comparison is that, for the LPI of Cu, all the EOSs yield fit
values of B0 which are higher than this value.

Table 4 shows that D1 values inferred from our model (equation (16)) are significantly
lower than those from the rest of the EOSs—the only exception is the one from the Luban EOS
for Cu, proving lower than ours. A similar relative performance of the EOSs is noted for the
D2 test, in table 5. The Mie–Gruneisen EOS is the only one that proves more stable than ours,
for W. Turning to D3 (table 6), although all the EOSs are, in general, very large compared to
ours, there are two points, those of Al and W from the Mie–Gruneisen EOS, for which the
registered D3 values are lower than equation (16).

D4 (table 7) reflects the goodness of the agreement of the fit parameter B0 with experiment.
Here, equation (16) agrees with experiment within 2%, with the exception of Al disagreeing
to 3.6% only. However, the agreement shown by the Keane and Birch–Murnaghan EOSs for
Mg, and the Poirier and Tarantola EOSs for MgO, is better than shown by our equation.

Focusing on D5 (table 8), it can be noticed that for equation (16) the agreement of the fit
B ′

0 with experiment is quite remarkable. Equation (16) mimics the experiment well within 1%
for as many as three solids. The mismatch with four others does not exceed 3%, but for Ag it
exceeds 4%, while the highest disagreement is observed for Al, but still the mismatch remains
well within 10%. It is only the Kumari and Dass equation that agrees slightly better than ours
for NaCl.

It must be noted that in assessing the relative performances we have given equal weight
to the numerical values related to the Di values. A question of considerable importance is
whether the 10% deviations in the fit values of B0 have the same bearing on the adequacy of
the EOSs as the 10% deviations in the fit values of B ′

0—of course not. Obviously, the EOSs
may be arranged in tables 4–8, using different points of justification regarding the weight to be
attached to the Di values, and thus the trends depicted for the relative utility may vary slightly.
Further, the position of relative utility may also vary by imposing an upper limit of validity to
the test-points. But what will not vary is the relative utility of our model—irrespective of the
methodology adopted for the purposes—with a well pronounced difference from all the EOSs
compared.

Furthermore, we must emphasize that small values of D1 and D2 may be misconstrued
as positive attributes to the adequacy of an EOS, unless the corresponding D4 values and D5

values are also small. To illustrate the point, we refer to tables 4 and 5, where the small values
of D1(4.61%) and D2 (−5.84%) for Cu might seem to lend credence to the adequacy of the
Luban EOS. But this is belied on a close examination of tables 7 and 8. Here, it can be seen that
the fit values of B0 from both the HPIs and LPIs are considerably higher than the experiment,
but their mutual difference is not that large, leading to a small D1 in table 4. Likewise, although
both the fit values of B ′

0 are considerably lower than the experiment, they are mutually not far
apart, resulting in a misleading small value for D2. The position with the Kumari and Dass
and the Murnaghan equations is similar.
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Table 9. Number of wiggles of the data deviation curves about the fits (NW).

3-parameter EOS Ag Al Cu Mg Mo Pd W MgO NaCl

1 Bose Roy–Bose Roy 15 11 4 13 12 17 11 24 17
2 Birch–Murnaghan 3 5 3 7 7 5 5 21 16
3 Keane 3 7 3 5 7 5 7 21 11
4 Holzapfel 3 5 3 5 7 5 5 21 14
5 Mie–Gruneisen 3 5 3 5 8 5 5 21 2
6 Hama–Suito 3 5 3 3 7 5 5 21 14
7 SASS 3 5 3 5 7 5 5 19 11
8 Davis–Gordon 3 5 3 3 7 3 7 19 11
9 Universal 3 5 3 3 5 5 5 19 14

10 Kumari–Dass 5 3 3 5 5 5 3 15 17
11 Huang–Chow 3 3 3 5 5 5 3 19 16
12 Luban 5 3 3 5 5 5 3 11 15
13 Freund–Ingalls 3 3 3 5 5 5 3 19 14
14 Mao 3 3 3 5 5 5 3 17 13
15 Murnaghan-3 5 3 3 5 5 5 3 11 11
16 Poirier–Tarantola 3 5 3 3 5 3 3 15 11

3.3. Departure of the data deviation plot from the normal error curve and adequacy of EOS

As already mentioned, measured isothermal compression data are biased by both the systematic
and random disturbances. If the systematic error is insignificant, and random errors are small,
a reasonable assumption for an isotherm claimed as accurate, the randomization of the data
points about the regression curve—when a hypothetical true EOS model, adequate within the
ranges of the data, is fitted to these isotherms—may be best approximated by the normal error
curve. The data points are evenly randomized about this true (hypothetical) regression curve.
Because of the indeterminate nature of the random error, we cannot however draw the true
regression curve. In practice, due to the inadequacy of the EOS model considered, systematic
biases come into play, and the cumulative effect of the systematic slant on the random biases
forces the data distribution to depart from the normal random variable distribution pattern. An
appreciation of the inadequacy of the considered EOSs is possible by an enumeration of the
wiggles of the data deviation curves about the fits—each turn indicating the distribution of the
positive and negative deviations around the regression curve. Obviously the number of wiggles
of the data deviation curve (referred to as NW in tables 9 and 10) about the true regression
curve would be a maximum for the hypothetical true EOS model, and would decrease with
decreasing closeness of a real EOS with the true EOS model. It can be argued therefore that
the curve-fitting capability of the EOSs can be compared on the basis of the departure of
the data deviation curves from the ideal normal random variable curve. If two EOSs differ
significantly from each other with regard to their curve-fitting capability, it would be manifest
in the significant difference in the number of wiggles of their data deviation curves. If, however,
the difference from each other is not very significant, or marginal, the same may be reflected
in the marginal difference in the number of wiggles, or merely in the degree of departures
of their data deviation curves from the symmetric normal random distribution pattern, and
an explicit difference in the number of wiggles may not be registered. In order to assess
any significant difference in the fitting capability of the EOSs compared, we have plotted the
deviation in the response, P , against the regressor, V/V0, inferred from all the EOSs for all the
nine isotherms considered, and counted the number of times the data deviation curves cross
the fit. The enumerated numerical values are tabulated in table 9. It may be noted that the
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Table 10. Overall relative performance of the EOSs based on their relative performances against
the seven tests as shown in tables 3–9.

3-parameter EOS RMSD D1 D2 D3 D4 D5 NW

1 Bose Roy–Bose Roy 1 1 1 1 1 1 1
2 Keane 3 3 4 2 2 2 3
3 Birch–Murnaghan 2 4 3 4 3 3 2
4 Mie–Gruneisen 4 2 2 3 4 4 5
5 Holzapfel 5 5 5 15 5 5 4
6 SASS 6 6 7 7 6 7 6
7 Hama–Suito 7 8 6 5 11 6 7
8 Davis–Gordon 8 9 8 6 12 8 8
9 Universal 9 7 9 8 7 9 9

10 Mao 10 10 11 10 8 10 13
11 Freund–Ingalls 11 11 10 9 9 11 12
12 Huang–Chow 12 12 12 11 10 12 11
13 Kumari–Dass 13 13 14 13 13 13 10
14 Luban 15 13 6 12 14 14 12
15 Murnaghan 14 14 13 12 14 14 14
16 Poirier–Tarantola 15 15 15 14 15 15 15

numerical values of NW are so arranged that, on an overall basis, in any row the number of
isotherms for which a higher number of wiggles is inferred from an EOS is higher than those
that follow down the table.

Table 9 shows that for Ag, Al, Mg, Mo, Pd, and W there is a significant difference between
the number of wiggles (NW) inferred from our EOS and the rest of the 15 EOSs compared,
thus indicating that, on a relative scale, equation (16) is much closer to the true EOS model,
compared to others. Notably, the number of wiggles is also higher for the NaCl and MgO
isotherms where the maximum compression ranges are relatively small. It is also remarkable
that even for the Cu isotherm, comprising only ten data points, equation (16) yields a higher
number of wiggles. Further, it may be noted that the difference in the number of wiggles,
between the rest of the successive EOSs down the table, is not that wide.

3.4. Overall position of relative utility

The overall position of the EOSs, with regard to their relative utility, is depicted in table 10. In
this table, the relative performance of the individual EOSs against the seven tests—the fitting
accuracy; stability of the fit parameters B0, B ′

0, and B ′′
0 ; agreement of the fit parameters B0 and

B ′
0 with experiment; and randomization of the data points about the fits (NW)—is expressed in

terms of the numerical values denoting their relative positions with reference to their individual
responses to the said tests in tables 3–9. It must be emphasized that these numerical values
do not constitute any quantitative scale. They simply indicate that the higher the numerical
value, the lower the rating against the tests specified at the column heads, on a relative scale.
It can be seen (tables 3–10) that our model is, in general, far superior to the nearest rivals,
the Keane and Birch–Murnaghan equations, on all seven tests—but the difference between the
successive EOSs, down the tables, is not so large. It must be emphasized here that all seven
tests are highly correlated, and none of them is singularly sufficient to assess the adequacy
of an EOS. In figures 1(a)–6(b), we compare and examine the deviations between the data
points and data fits with various equations. All the EOSs are systematically high at low and
high pressures. One important feature, which is conspicuous in all the graphs, is that the fits
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Figure 1. (a) and (b). Comparison of deviations between the data curve of Ag [56] and the fits
from Bose Roy–Bose Roy, and the other equations of state.

yielded by equation (16), result in a very accurate representation of the data. The magnitude
of systematic deviations at low pressure is appreciably low—a characteristic of a well behaved
EOS that helps in the extraction of accurate values of fit parameters [22], and is much lower
than those arising from all the other EOSs. Moreover, randomization of the data points about
the fits is also decisively better—the deviation curves hovering closely around the fits, over the
entire pressure ranges, while the deviation points yielded by the other EOSs huddle together,
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Figure 2. (a) and (b). Comparison of deviations between the data curve of Al [56] and the fits
from Bose Roy–Bose Roy, and the other equations of state.

especially at low and high pressures, indicating that the difference in the curve-fitting capability
of these EOSs is not as pronounced as the difference between them and equation (16).

Our observation that there is no significant difference in the curve-fitting capability
between the Birch–Murnaghan and Keane EOSs (tables 3–10), based on the real experimental
compression data, accords well with the Macdonald and Powell conclusion [51]—based on the
use of exact synthetic data over smaller pressure ranges—that the actual discrimination between
these EOSs is nugatory. Anderson [16] has used a variety of shock-wave measurements on
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Figure 3. (a) and (b). Comparison of deviations between the data curve of Cu [58] and the fits
from Bose Roy–Bose Roy, and the other equations of state.

several solids to show that the Keane equation is slightly superior to the Murnaghan equation.
Macdonald [80], however, contended that a small difference between the B ′

0 values used in data
fitting with the Keane equation and with the Murnaghan equation would render the resulting
curves the same within the likely experimental error of the data used by Anderson. Although
the Keane EOS is better, the difference between the two EOSs, as noted earlier, is not large. In
fact, by arbitrarily using slightly different values of B ′

0, the predictions of many such equations
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Figure 4. (a) and (b). Comparison of deviations between the data curve of Mg [56] and the fits
from Bose Roy–Bose Roy, and the other equations of state.

may be forced to converge within the desired limit of experimental uncertainty. However,
the moot point is that such arbitrary exercises are unjustified for discrimination purposes, and
therefore negate such contentions.

Hama and Suito [34] have compared prediction capability of some EOSs, using the
theoretical values of bulk moduli parameters for some solids, including Cu, with the theoretical
isotherms—and concluded that the universal EOS is in good agreement with the theoretical
isotherms up to about V/V0 = 0.2–0.3 or up to about 10 TPa in pressure. It is not clear
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Figure 5. (a) and (b). Comparison of deviations between the data curve of Pd [56] and the fits
from Bose Roy–Bose Roy, and the other equations of state.

what issues their study, involving the comparison of one theory with the other, addresses,
because the test ground for the validity of an EOS is its agreement with experiment. In fact,
the universal EOS badly fails (tables 4–8) to describe the experimental isotherm of Cu of Nellis
et al [58], ranging to about 1 TPa only. Attempts to theoretically predict the EOS of solids
continue [74, 75], but they are eventually guided by experiment, to check and thereby improve
upon the assumptions and approximations entailed therein. Further, an EOS is required to be
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Figure 6. (a) and (b). Comparison of deviations between the data curve of W [59] and the fits from
Bose Roy–Bose Roy, and the other equations of state.

applicable in practice, and also in principle [54], to the point of structural phase transition only,
and not to the enormous pressure ranges theoretically conceivable. However, their improved
version of the universal EOS does exhibit a better curve-fitting capability for the experimental
isotherms (table 10).

The Mie–Gruneisen EOS may not have agreed well with the geophysical data [41], but the
response of this EOS, based on the century-old potential, towards the laboratory compression
data is noteworthy—occupying as high as the fourth position on the scale of relative utility.
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Notably, the assertion of Sushil et al [39] that their EOS (SASS), based on a modified
Eulerian strain, is better than the Birch–Murnaghan EOS is negated on experimental grounds.
Further, it will be interesting to note that the Poirier and Tarantola EOS, with its claim of
stronger convergence than the Birch–Murnaghan EOS refuted [85], is the poorest among all
the EOSs collated in table 10. Furthermore, on fitting to the ultra-high pressure isotherm of Cu,
it yields an absurd negative fit value for B ′

0. Of the five outliers, equations (17)–(21), for which
no results are shown, the Lagrangian EOS yields negative values for B ′

0 for the HPIs of Ag, Cu,
and Mg, while the Slater EOS also suffers from the same limitations, yielding negative values
for B ′

0 for as many as seven solids, excepting the rather low compression isotherms of MgO
and NaCl, as anticipated by Stacey et al [21]. Although the fitting capability of equations (17),
(19), and (20) is very poor and the fit parameters are far off from the experimental values,
they do not yield such absurd negative values. Thus the Lagrangian EOS is not a mere case
of a poor convergence implying a poor fitting capability [73]. However, we have observed
no such absurd behaviour for any of these outliers for the LPIs. Obviously, these EOSs were
considered viable because they could fit well the then achievable EOS data, ranging to low
pressures.

4. Summary

A most stringent discrimination technique, comprising seven separate tests, is applied to all
the isothermal three-parameter EOSs—with reference to nine model-independentand accurate
isotherms with pressures/compressions ranging to very high values. Although none of the
seven tests is singularly sufficient to assess the adequacy of an EOS, a higher fitting accuracy
in conjunction with a higher number of wiggles of the data deviation curves about the fits may
provide a good guess as to the adequacy of an EOS. It is remarkable that, out of the 63 test
points accompanying each of the nearest rival equations, the Keane and Birch–Murnaghan
equations (tables 3–9), only one test point of each of them proves better than ours. Obviously,
the accepted position in the literature that ‘the Birch-Murnagan EOS is now empirically the
best’ [88], is not correct. Further, it is shown by numerical as well as graphical results that the
difference in the curve-fitting capability of the EOSs, including the most widely used Birch–
Murnaghan EOS; is not as large as the difference between them and our EOS. To conclude, an
equation of state of solids continues to be invoked as an interpolation and smoothing device for
the data, and for the extraction of accurate values of bulk modulus values from them. Analysis
of curve-fitting results clearly indicates that while most of the EOSs lie in a narrow band of
utility for these purposes, our model on an overall assay—with its excellent fitting capability
for quantum solids of bulk modulus value of as low as B0 = 1.7 kbar [36], and excellent
fitting capability features for a broad class of materials [37]—is decisively superior to all the
isothermal three-parameter equations of state of solids thus far proposed in the literature.
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